A) I
B) II
C) III
D) IV
E) V
Correct Answer
verified
Multiple Choice
A) in the nutrient broth only.
B) in the nutrient broth and the tetracycline broth only.
C) in the nutrient broth, the ampicillin broth, and the tetracycline broth.
D) in all four types of broth.
E) in the ampicillin broth and the nutrient broth.
Correct Answer
verified
Multiple Choice
A) exonuclease, DNA polymerase III, RNA primase
B) helicase, DNA polymerase I, DNA ligase
C) DNA ligase, nuclease, helicase
D) DNA polymerase I, DNA polymerase III, DNA ligase
E) endonuclease, DNA polymerase I, DNA ligase
Correct Answer
verified
Multiple Choice
A) ligase
B) transcriptase
C) a restriction enzyme
D) RNA polymerase
E) DNA polymerase
Correct Answer
verified
Multiple Choice
A) There would be an increase in the amount of "satellite" DNA produced during centrifugation.
B) The cell's DNA couldn't be packed into its nucleus.
C) Spindle fibers would not form during prophase.
D) Amplification of other genes would compensate for the lack of histones.
E) Pseudogenes would be transcribed to compensate for the decreased protein in the cell.
Correct Answer
verified
Multiple Choice
A) Each nucleosome consists of two molecules of histone H1.
B) Histone H1 is not present in the nucleosome bead; instead, it draws the nucleosomes together.
C) The carboxyl end of each histone extends outward from the nucleosome and is called a "histone tail."
D) Histones are found in mammals, but not in other animals or in plants or fungi.
E) The mass of histone in chromatin is approximately nine times the mass of DNA.
Correct Answer
verified
Multiple Choice
A) it is heat stable and can withstand the heating step of PCR.
B) only minute amounts are needed for each cycle of PCR.
C) it binds more readily than other polymerases to the primers.
D) it has regions that are complementary to the primers.
E) it is heat stable, and it binds more readily than other polymerases to the primers.
Correct Answer
verified
Multiple Choice
A) DNA without attached histones
B) DNA with H1 only
C) the 10-nm chromatin fiber
D) the 30-nm chromatin fiber
E) the metaphase chromosome
Correct Answer
verified
Multiple Choice
A) It is composed of DNA alone.
B) The nucleosome is its most basic functional subunit.
C) The number of genes on each chromosome is different in different cell types of an organism.
D) It consists of a single linear molecule of double-stranded DNA plus proteins.
E) Active transcription occurs on heterochromatin but not euchromatin.
Correct Answer
verified
Multiple Choice
A) DNA passed from the heat-killed strain to the living strain.
B) Protein passed from the heat-killed strain to the living strain.
C) The phosphorescence in the living strain is especially bright.
D) Descendants of the living cells are also phosphorescent.
E) Both DNA and protein passed from the heat-killed strain to the living strain.
Correct Answer
verified
Multiple Choice
A) sequence of bases
B) phosphate-sugar backbones
C) complementary pairing of bases
D) side groups of nitrogenous bases
E) different five-carbon sugars
Correct Answer
verified
Multiple Choice
A) Histones are positively charged, and DNA is negatively charged.
B) Histones are negatively charged, and DNA is positively charged.
C) Both histones and DNA are strongly hydrophobic.
D) Histones are covalently linked to the DNA.
E) Histones are highly hydrophobic, and DNA is hydrophilic.
Correct Answer
verified
Multiple Choice
A) Mutant mice were resistant to bacterial infections.
B) Mixing a heat-killed pathogenic strain of bacteria with a living nonpathogenic strain can convert some of the living cells into the pathogenic form.
C) Mixing a heat-killed nonpathogenic strain of bacteria with a living pathogenic strain makes the pathogenic strain nonpathogenic.
D) Infecting mice with nonpathogenic strains of bacteria makes them resistant to pathogenic strains.
E) Mice infected with a pathogenic strain of bacteria can spread the infection to other mice.
Correct Answer
verified
Multiple Choice
A) to unwind the DNA helix during replication
B) to seal together the broken ends of DNA strands
C) to add nucleotides to the 3' end of a growing DNA strand
D) to degrade damaged DNA molecules
E) to rejoin the two DNA strands (one new and one old) after replication
Correct Answer
verified
Multiple Choice
A) nucleosome, 30-nm chromatin fiber, looped domain
B) looped domain, 30-nm chromatin fiber, nucleosome
C) looped domain, nucleosome, 30-nm chromatin fiber
D) nucleosome, looped domain, 30-nm chromatin fiber
E) 30-nm chromatin fiber, nucleosome, looped domain
Correct Answer
verified
Multiple Choice
A) I, II, IV, III, V
B) II, III, V, IV, I
C) III, II, IV, V, I
D) III, IV, V, I, II
E) IV, V, I, II, III
Correct Answer
verified
Multiple Choice
A) No proofreading will occur.
B) No replication fork will be formed.
C) The DNA will supercoil.
D) Replication will occur via RNA polymerase alone.
E) Replication will require a DNA template from another source.
Correct Answer
verified
Multiple Choice
A) It synthesizes RNA nucleotides to make a primer.
B) It catalyzes the lengthening of telomeres.
C) It joins Okazaki fragments together.
D) It unwinds the parental double helix.
E) It stabilizes the unwound parental DNA.
Correct Answer
verified
Multiple Choice
A) by adding methyl groups to adenines and cytosines
B) by using DNA ligase to seal the bacterial DNA into a closed circle
C) by adding histones to protect the double-stranded DNA
D) by forming "sticky ends" of bacterial DNA to prevent the enzyme from attaching
E) by reinforcing the bacterial DNA structure with covalent phosphodiester bonds
Correct Answer
verified
Multiple Choice
A) There are two replication forks going in opposite directions.
B) Thymidine is being added only where the DNA strands are farthest apart.
C) Thymidine is being added only at the very beginning of replication.
D) Replication proceeds in one direction only.
Correct Answer
verified
Showing 21 - 40 of 68
Related Exams